g(x, y) → x
g(x, y) → y
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
↳ QTRS
↳ DependencyPairsProof
g(x, y) → x
g(x, y) → y
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
F(x, y, s(z)) → F(0, 1, z)
F(0, 1, x) → F(s(x), x, x)
g(x, y) → x
g(x, y) → y
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
F(x, y, s(z)) → F(0, 1, z)
F(0, 1, x) → F(s(x), x, x)
g(x, y) → x
g(x, y) → y
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
F(x, y, s(z)) → F(0, 1, z)
F(0, 1, x) → F(s(x), x, x)
g(x, y) → x
g(x, y) → y
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(x, y, s(z)) → F(0, 1, z)
Used ordering: Combined order from the following AFS and order.
F(0, 1, x) → F(s(x), x, x)
s1 > F1 > 0
1 > F1 > 0
1: multiset
0: multiset
s1: multiset
F1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F(0, 1, x) → F(s(x), x, x)
g(x, y) → x
g(x, y) → y
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))